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As the above discussion is limited to uniaxial 
tensile tests, it would be premature to reach any 
general conclusions about carbide cracking in 
pearlite as an emission source in all deformation 
situations. For uniaxial tensile stress conditions, 
Miller and Smith [12] have proposed a crack 
propagation mechanism whereby the cracking of 
individual carbide plates extends progressively 
throughout a pearlite colony, via slip in the inter- 
plate ferrite. However, if such a process, from the 
AE standpoint, occurs slowly the unit emission 
source will be the fracture of individual carbide 
lameUae. On the other hand, the general stress 
field around a colony could affect such a defor- 
mation process. For example, in crack propagation 
tests, stress triaxially in the crack tip region may 
promote the pearlite to fail in such a way that 
many individual carbide plates fracture simui. 
taneously. Under these conditions the unit 
emission process would not be the same as that de- 
scribed above. Thus the emission characteristics of 
one particular microstructural feature may well be 
different in different stress field configurations. 
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Prediction of thermal fatigue life of 
ceramics 

Crack growth in one cycle of  thermal stress can 
not be given easily due to the difficulty in knowing 
the precise thermal stress distribution. This seems 
to make it difficult to relate the results of short- 
term tests to the fatigue life in practice. However, 
consideration of  the fact that the fatigue life is 
approximated by the duration in which the crack 
length reaches a certain critical value, beyond 
which the growth becomes relatively rapid, may 
make the prediction easy. 

The slow crack growth can be described by 

da 
- -  ~ A n 
dt  K~ (1) 

where a, t, KI, A and n stand for crack length, 
time, stress intensity factor and material constant, 
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respectively [! ]. KI is, also, expressed by 

KI = yal /2  a (2) 

where Y and o stand for geometrical factor and 
applied stress, respectively [2]. Substitution of 
Equation 2 into Equation 1 gives, 

da 
- A ynar'2 a n (3) 

dt 

or, in general, consists of mechanical stress, aM, 
and thermal one, aT. When thermal fatigue limits 
the life of a ceramics, aM can be neglected and 

a ~ a T .  (4) 

Under thermal stress, generally, the stress distri- 
bution and the type of  the stress change with the 
crack length as well as time, depending on the 
shape of the ceramic articles and heating or cooling 
process. Thus, in general, Y and a depend on the 
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crack length as well as the time and temperature, 
which makes it difficult to obtain the analytical 
solution for a in Equation 3. For the prediction, 
however, the following approximation can be 
made for Y and a. 

The growth rate of  a crack is proportional to 
a nn (n >1 20), and a as well as Y is not so a 
rapidly decreasing function of a. So, the growth 
rate can be expected to become rapid as the crack 
grows. Thus, the substantial part of the fatigue 
life is expected to have passed before the crack 
length.reaches a certain critical value, ac. 

The critical length is generally thought to be 
small. For example, for a ceramic of n = 20, on 
the assumption that Y and a are not so rapidly 
decreasing functions, the ratio of the crack vel- 
ocity, vl,  at a = 10pm to that, v2, at a = 20pm 
is about 10 -3. The time (or number "bf cycles of 
thermal shock), ta, in which the crack reaches the 
depth of 10pm from the surface is longer than 
10 pm/vl . 

The time, t2, in which the crack reaches the 
depth of 104 ~tm from that of  20pm, is shorter 
than 104 pm/v2. Therefore, tl > t2, which shows 
that the critical length can be taken as about 20 
pm. Variation of o and Y would not change the 
value substantially. 

As seen above, for prediction of the fatigue 
life of ceramics, the crack growth can be restricted 
within a small range of a. Thus, in Equation 3, Y 
and o can be approximated to be constant, 

Y =  Y(a=O, t) 
(5) 

a =  a ( a = 0 ,  t) 

Moreover, aT is directly proportional to the tem- 
perature difference in the thermal shock, when 
heating or cooling condition is kept unchanged 
except for the value of the temperature difference, 
AT. Thus, 

a T ~ kATf(t), (6) 

where k is a constant. After substitution of 
Equations 5 and 6 into Equation 3, integration 
gives 

ai(2-n)/2 -- a(2-n)/2 = (n~2 2)AKn(A T)n 

x ynfndt (7) 

where a i stands for the initial crack length. For 
one cycle of the thermal shock, the Upper limit t 
of the integration in Equation 7 is taken as infinity. 
Thus, Equation 7 results in 

ai(2-n)n--a(2-n)n = ( ~ - ~ ) ( A T ) n G  (8) 

where 
G = knA ynfndt. 

For M times of thermal shock, 

ai(2-n)/2--a(2-n)n = ~ 2 2 ) ( A T ) n M G ( 9 )  

The thermal fatigue life N is determined by 
equating a to ac, in Equation 9. For ceramics of 
the same ai, the following relation is easily derived, 

N(ATN)" = N'(ATN,)", (10) 

where ATN and ATN, correspond respectively to 
the severity of the thermal shock, for which the 
fatigue life is N and N ' .  

Equation 10 gives also, 

(N/N') = (ATN,/ATN) n. (11) 

Equation 10 or 1 1 holds for the median or mean 
value of the fatigue fife of ceramics having the 
same statistical feature, and evidently relates the 
results of short-term tests to those of long-term 
tests, and therefore is useful for prediction of 
fatigue life. 

For individual ceramics, a statistical treatment 
is needed. As is well known, the fracture strength 
of ceramics follows the Weibull equation, 

P = exp[--V(af/ao) m] (12) 

where P is the survival probability under the 
fracture stress of, m is Weibull modulus and ao is a 
normalizing constant, and V is the stressed volume. 
The fracture stress a~ is related to ai through the 
following 

a~[ ~ la }2- . ) /2  q: const.) (13) 

where l is a constant. Thus,P is written as follows, 
t t n  I 

P = exp [-- V(ai/ao) ],  (14) 
where 

ao = a~ "/(2 -") l 2/<"-2) 

m' = m(2- -n ) /2n .  
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In Equation 9, as n >~ 20 and ai < a e ,  ai can be 
approximated as follows: 

n - - 2  
a} 2-")'2 ~ - -  N(ATN)nG. (lS) 

2 

Substitution of Equation 15 into Equation 14 
gives, 

P = exp[--V'Nm/n(ATN)rn], (16) 

or  

l n ( - l n P )  = In V' + m l n N +  mln(ATN), (17) 
n 

where 
{ n _  2~ m/n 

V ' =  Vlm/"t 'c-~) Gm/"uo m. 

Equation 16 or 17 gives the relationship between 
the thermal fatigue life, N, the survival probability, 
P, and the thermal shock severity, ATN, which 
closely resembles the S-P-Trelationships derived 
by Tappin, Davidge and McLaren [3]. 

Through Equations 11, 16 and 17, results of 
short-term tests can be related to those of long- 
term ones. The validity of Equation 11 will be dis- 
cussed by using the results given by Hasselman et 
al. [4]. l n N - -  In (ATN)P!ot s from the results [4] 
are given in Fig. 1. As shown in the figure, lnNis  
proportional to In (ATN), which seems to prove 
the validity of the present theory. 

The constant, n, determined from Figure 1 is 
about 30. Although this value of n is a little larger 
than that determined by other methods (n ~ 20), 
the agreement is rather good. This tendency for n, 
as determined by Equation 11, to be a little larger 
than the value determined by the crack growth 
measurement, is observed for a hot-pressed silicon 
nitride, whose N and ATN are given by Ammann 
et al. [5] (In this case, the linearity between lnN 
and In ATN holds), n determined by Equation 11 
is about 40, which is a little larger than the value 
for sintered silicon nitride, n ~ 15 to 40 [6]. The 
discrepancy for the values of n may come from the 
fact that Y and a are taken as constants and that n 
for Equation 11 is microscopic in contrast with 
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Figure 1 Thermal shock severity (~,T) versus thermal 
fatigue life (N) in soda-lime-silica glass rods. (Results 
from Hasselman et al. [4]). 

macroscopic for the crack growth measurement. A 
detailed paper will be given in near future. 

References 
1. A . G .  EVANS and H. JOHNSON, a r. Mater. Sci. 10 

(1975) 214. ( 
2. P.C. PARIS and G. C. SIH, ASTM Special Tech. 

Publ. No. 381 (1965). 
3. R.W. DAVIDGE, J. R. McLAREN and G. TAPPIN, 

J. Mater. Sci. 8 (1973) 1699. 
4. D . P . H .  HASSELMAN, R. BADALIANCE, K. R. 

McKINNEY and C. H. KIM, ibid 11 (1976) 458. 
5. C. L. AMMANN, J. E. DOHERTY and C. G. 

NESSLEA, Mater. ScL Eng. 22 (1976) 15. 
6. A . G .  EVANS and S. M. WlEDERHORN, Jr. Mater. 

Sci. 9 (1974) 270. 

Received 21 March 
and accepted 28 April 19 77. 

NOBOU KAMIYA 
OSAMI KAMIGAITO 

Toyota Central Research 
and Development Labs. Inc., 

2-12 Hisakata, Tempaku-ku, 
Nagoya, Japan. 

214 


